Видно, что формулы (4) и (5) очень удобны при вычислении инварианта очень большого числа, т.е. десятичная запись которого состоит из большого количества цифр. Кроме того формула (3) очень удобна для определения кратности числа N девяти. Как мы знаем по признаку делимости: число делится(кратно) девяти тогда, когда делится(кратна) сумма цифр данного числа. Но если число состоит из очень большого количества цифр, то операция сложения цифр числа довольно затруднительна. Поэтому считаем(естественно на калькуляторе) по формуле (3) инвариант данного числа: если в результате получился 0, то данное число делится(кратно) на 9(если по формуле (4), то будет 9).
Теорема 2 (необходимое условие простоты числа)
Если число простое, то его инвариант принадлежит множеству: {1, 2, 4, 5, 7, 8} и окончание числа принадлежит множеству: {1, 3, 7, 9},
Если i=3, 6 или 9, то видно, что N=3(K+1), 3(K+2) или 3(K+3). Видно, что число будет обязательно делиться на 3, т.е. составное.
2) Любое число представимо в виде:N=10M+е. Если е=2, 4, 6 или 8, то: N=2(5к+1), 2(5к+2), 2(5к+3) или 2(5к+4). Видно, что число будет обязательно делиться на 2, т.е. составное.
Таким образом, все простые числа(p>7) имеют инвариант, равным 1, 2, 4, 5, 7 или 8 и оканчиваются на 1, 3, 7 или 9.
Пример 3
Даны простые числа p1=113, p2=127, p3=137, p4=139, p5=151, p6=179. Находим их инварианты: i(113)=1+1+3=5, i(127)=i(1+2+7)=i(10)=1+0=1,